Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Emerg Infect Dis ; 29(6): 1223-1227, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320019

ABSTRACT

Anthropogenic transmission of SARS-CoV-2 to pet cats highlights the importance of monitoring felids for exposure to circulating variants. We tested cats in the United Kingdom for SARS-CoV-2 antibodies; seroprevalence peaked during September 2021-February 2022. The variant-specific response in cats trailed circulating variants in humans, indicating multiple human-to-cat transmissions over a prolonged period.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cats , Animals , Seroepidemiologic Studies , COVID-19/epidemiology , COVID-19/veterinary , Antibodies, Viral , United Kingdom/epidemiology
2.
Viruses ; 15(3)2023 03 11.
Article in English | MEDLINE | ID: covidwho-2267383

ABSTRACT

A higher prevalence of SARS-CoV-2 infections in animals that have close contact with SARS-CoV-2-positive humans ("COVID-19 households") has been demonstrated in several countries. This prospective study aimed to determine the SARS-CoV-2 prevalence in animals from Swiss COVID-19 households and to assess the potential risk factors for infection. The study included 226 companion animals (172 cats, 76.1%; 49 dogs, 21.7%; and 5 other animals, 2.2%) from 122 COVID-19 households with 336 human household members (including 230 SARS-CoV-2-positive people). The animals were tested for viral RNA using an RT-qPCR and/or serologically for antibodies and neutralizing activity. Additionally, surface samples from animal fur and beds underwent an RT-qPCR. A questionnaire about hygiene, animal hygiene, and contact intensity was completed by the household members. A total of 49 of the 226 animals (21.7%) from 31 of the 122 households (25.4%) tested positive/questionably positive for SARS-CoV-2, including 37 of the 172 cats (21.5%) and 12 of the 49 dogs (24.5%). The surface samples tested positive significantly more often in households with SARS-CoV-2-positive animals than in households with SARS-CoV-2-negative animals (p = 0.011). Significantly more animals tested positive in the multivariable analysis for households with minors. For cats, a shorter length of outdoor access and a higher frequency of removing droppings from litterboxes were factors that were significantly associated with higher infection rates. The study emphasizes that the behavior of owners and the living conditions of animals can influence the likelihood of a SARS-CoV-2 infection in companion animals. Therefore, it is crucial to monitor the infection transmission and dynamics in animals, as well as to identify the possible risk factors for animals in infected households.


Subject(s)
COVID-19 , Humans , Animals , Dogs , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2 , Prospective Studies , Family Characteristics , Risk Factors
3.
Viruses ; 15(1)2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2200885

ABSTRACT

In human beings, there are five reported variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). However, in contrast to human beings, descriptions of infections of animals with specific variants are still rare. The aim of this study is to systematically investigate SARS-CoV-2 infections in companion animals in close contact with SARS-CoV-2-positive owners ("COVID-19 households") with a focus on the Delta variant. Samples, obtained from companion animals and their owners were analyzed using a real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Animals were also tested for antibodies and neutralizing activity against SARS-CoV-2. Eleven cats and three dogs in nine COVID-19-positive households were RT-qPCR and/or serologically positive for the SARS-CoV-2 Delta variant. For seven animals, the genetic sequence could be determined. The animals were infected by one of the pangolin lineages B.1.617.2, AY.4, AY.43 and AY.129 and between zero and three single-nucleotide polymorphisms (SNPs) were detected between the viral genomes of animals and their owners, indicating within-household transmission between animal and owner and in multi-pet households also between the animals. NGS data identified SNPs that occur at a higher frequency in the viral sequences of companion animals than in viral sequences of humans, as well as SNPs, which were exclusively found in the animals investigated in the current study and not in their owners. In conclusion, our study is the first to describe the SARS-CoV-2 Delta variant transmission to animals in Switzerland and provides the first-ever description of Delta-variant pangolin lineages AY.129 and AY.4 in animals. Our results reinforce the need of a One Health approach in the monitoring of SARS-CoV-2 in animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Dogs , Humans , COVID-19/veterinary , Immunity , Pangolins , Pets , SARS-CoV-2/genetics , Switzerland/epidemiology , Cats
4.
Nat Immunol ; 23(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585824

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Subject(s)
Antibodies, Viral/immunology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans
5.
PLoS Pathog ; 17(12): e1010022, 2021 12.
Article in English | MEDLINE | ID: covidwho-1546978

ABSTRACT

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19 , Immunization, Secondary , SARS-CoV-2/immunology , Vaccine Efficacy , Antigenic Drift and Shift/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/prevention & control , HEK293 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL